A letter to the editor of Brain regarding ‘Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort’ (Symonds et al., 2019)

Title:

Early-onset Genetic Epilepsies Reaching Adult Clinics

Authors:

David Lewis-Smith
1. Wellcome Trust Clinical PhD Training Fellow, Translational and Clinical Research Institute, Newcastle University, UK
2. Neurology Speciality Trainee, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
https://orcid.org/0000-0002-1735-8178

Colin A. Ellis
1. The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
2. Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
https://orcid.org/0000-0003-2152-8106

Ingo Helbig
1. Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
2. The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
3. Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
4. Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
ENGIN
Rhys H Thomas

1. Translational and Clinical Research Institute, Newcastle University, UK
2. Royal Victoria Infirmary, Newcastle-upon-Tyne, UK

Corresponding Author:

Rhys.Thomas@newcastle.ac.uk
Tel +44(0)7969709833
Sir,

We read with great interest the article ‘Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort’ (Symonds et al., 2019). We have extrapolated from these data to estimate the proportion of these epilepsies remaining active in adulthood; between one and two thirds of the cohort will need the care of an adult neurologist.

Over recent years, studies of clinician-led (Helbig et al., 2016; Berg et al., 2017; Lindy et al., 2018; Borlot et al., 2019; Truty et al., 2019) and standardised gene panel testing (Trump et al., 2016; Butler et al., 2017) have identified the most commonly implicated genes amongst those patients accessing the tests. However, ascertainment bias has obscured the true population-based frequency of these disorders. One previous study exploited a comprehensive healthcare system for population-based ascertainment but focused on early-onset severe epilepsies performing non-standardised genetic tests for 50 participants (Howell et al., 2018). Symonds et al. (2019) must be commended on completing the first prospective study applying molecular testing systematically across a broad range of seizure disorders of unknown aetiology presenting before 3 years of age to calculate the frequency of these individually rare disorders in a population-based manner, not biased by access to healthcare or research centres, nor limited to a narrow phenotypic group, and with their focus on genes which already guide clinical management.

Whilst, the role of genetic testing is increasingly recognised in paediatrics where the health economic yield is greatest (Joshi et al., 2016; Howell et al., 2018; Oates et al., 2018), less is known of the frequency at which adult neurologists should expect to encounter these monogenic epilepsies. Children grow into adults and with advances in paediatric care it is becoming increasingly common for children with even severe developmental and epileptic encephalopathies to reach transition. The majority of adults with early_onset epilepsies, however, will not have benefited from recent genetic diagnostic discoveries (Catarino et al., 2011). With gradually increasing evidence to inform genetically stratified clinical management and increasing access to testing it is important that neurologists caring for adults with epilepsy recognise the frequency of these genetic disorders in their clinic population. Symonds et al. were able to recruit comprehensively from the limited number of centres likely to care for paediatric patients in Scotland; however, obtaining such comprehensive, unbiased population-based data in adulthood would be more challenging because of the greater number and range...
of care settings in which patients are cared for. Until our present analysis, the best estimates of population prevalence in adults are actually diagnostic yields of genetic tests in adults of various ages ascertained opportunistically from specialist settings (Borlot et al., 2019; Truty et al., 2019).

The International League Against Epilepsy emphasises the use of molecular diagnostics as well as electro-clinical syndromes in clinical management (Scheffer et al., 2017). Reviewing the natural histories and treatment responses reported for the electroclinical syndromes and genetically defined epilepsies identified by Symonds et al. we have estimated the number that will remain active, requiring treatment and neurology follow up in adulthood. We have conservatively reported lower and higher estimates at the level of complete individuals because there is limited published data on the long-term prognosis of many of these syndromes and genetically defined epilepsies into adulthood.

Symonds et al. (2019) identified 76 individuals who had early childhood-onset epilepsy with a variant in one of 104 genes from a birth cohort of 169,470. Of these, we predict that 25-56 will continue to require neurological care in adulthood (Table 1). Applying a 95% exact Poisson confidence interval of 16.2-72.7, this corresponds to a lifetime risk of 9.56-42.9/100,000. In 20-44 individuals (11.8-26.0/100,000; 95% confidence interval 7.21-34.9/100,000) the implicated gene may already guide treatment decisions.

In addition to the caveats discussed by Symonds et al. (2019) there are several limitations to the interpretation of these figures. Firstly, in order to provide estimates that are easily generalised to other populations we have forecasted the lifetime risk rather than cross-sectional prevalence at transition. Were Scotland’s overall childhood mortality and migration rates to remain fixed at the 2018 figures of 272 deaths, 30,271 immigrants and 26,048 emigrants amongst 972,972 people under 17 years old (National Records of Scotland, 2019), then overall childhood mortality would have little effect on the denominator. However, the effect of migration is harder to predict as little is known of the trends in migration of children with early-onset epilepsies. However, were the risk amongst the 55,826 17-year-olds in Scotland in 2018 (National Records of Scotland, 2019) to be as predicted, one would expect 5-24 of them to have a history of seizures prior to 3 years of age and also to require neurological care in adulthood because of a variant detectable using the 104-gene panel.
Secondly, the estimates rely upon the very limited gene and syndrome specific data for long-term prognosis because most case series focus on childhood and those fewer studies of adults are biased to ascertain those with active epilepsy. Beyond Dravet syndrome (Cooper et al., 2016) and SCN8A-related epilepsies (Johannesen et al., 2018b) there is little knowledge of the total childhood mortality of specific genetic epilepsies. However, mortality is elevated in children with epilepsy (Jennum et al., 2017), and this is likely to be greatest in those with developmental and epileptic encephalopathies (Berg et al., 2004). Whilst a significant proportion of people with these early-onset epilepsies born over a decade ago will not have survived to transition, with advances in paediatric neurological and supportive care this may be pessimistic today. Similarly, most studies of long-term prognosis did not include surgical care, but long-term remission following surgery may occur in genetic epilepsies such as those caused by DEPDC5 (Baulac et al., 2015; Stevelink et al., 2018). We speculate that in future disease-modifying treatments may both ameliorate the phenotype and increase the proportion of children that need neurology care as adults because of their increased survival to transition and beyond.

Thirdly, whilst in some genes the molecular consequences of variants may be associated with clinical features such as natural history and response to specific treatment (Wolff et al., 2017), we have not been able to exploit genotype-phenotype associations at variant level because many variants are ultra-rare and the evidence of association between specific diagnostic variants and longitudinal phenotype is weak for many epilepsy genes.

Fourthly, these figures probably underestimate the total lifetime risk of currently demonstrable genetic epilepsies in adulthood because Symonds et al. used a 104-gene panel rather than screening for all known genetic causes of epilepsy. Testing for further epilepsy genes (Borlot et al., 2019), karyotype and copy number variants would yield additional diagnoses in adults with intellectual disability (Borlot et al., 2017), which may explain the phenotype and inform prognostic counselling, despite currently having a lesser role in treatment stratification. In particular, as acknowledged by the authors, the panel did not include TSC1 or TSC2, which may contribute up to 10 cases per 100 000 live births (Ebrahimi-Fakhari et al., 2018) potentially benefiting from everolimus (French et al., 2016). Four participants with diagnostic variants were not included in our calculations because they had not progressed to epilepsy during the study, but they remain at risk. Similarly, as noted by the authors, some children from this birth cohort may yet develop genetic epilepsies detectable by this panel but will not have met the
threshold for testing by 36 months of age. We would add CHD2 (Suls et al., 2013; Thomas et al., 2015; Trivisano et al., 2015) to their list of genes with later onset chronic epilepsies.

Finally, we have assumed generalisability between the cohorts in the published studies of the various syndromic and genetically defined epilepsies and the cohort in this study. However, there may be biological differences, for example due to ancestral stratification.

To further understand the course of genetic epilepsies, we analysed longitudinal data from the Epilepsy Neurogenetics Initiative, which follows individuals with genetic epilepsies, including many individuals who are yet to reach adulthood (Fig. 1A-C). Given that the relative novelty of comprehensive gene panel testing implies that 'catch up' testing is necessary for older children and adults, the few diagnoses in adolescence and adulthood suggest that many adults remain undiagnosed despite carrying detectable diagnostic variants (Fig. 1B). At least half of those individuals who have reached 18 years of age and attended clinics for any reason have active prescriptions for anti-epileptic medications: a proxy measure for continuing neurological care (Fig. 1C-D).

We conclude that at least 10-50/100,000 people will require the care of an adult neurologist because of a genetic disorder originally presenting as early-onset epilepsy. We hope that these extrapolated figures inform attitudes to genetic testing amongst adult neurologists who must consider the multitude of patients under their care who are too old to have benefited from modern genetic investigation under paediatric services, as well as researchers designing genetically stratified studies of the adult population.
Adult neurologists need to know that these conditions frequently reach the adult clinic manifesting as seizures or movement disorders, often but not always with associated intellectual disability or psychopathology, and that the yield of genetic testing in this group is 25%; with the majority of these a genetic diagnosis may inform treatment decisions (Borlot et al., 2019; Symonds et al., 2019). Testing with a panel of validated epilepsy genes, a copy number variant screen, and karyotyping should be strongly considered for adults (as well as children) who have unexplained epilepsy, intellectual disability or movement disorders originally presenting with seizures prior to 3 years of age.
Legend for Table 1

Estimates of the number of children with genetic diagnosis and epilepsy onset before 3 years of age from Symonds et al. (2019) requiring adult neurology care based on phenotypic and genotypic features.

Legend for Figure 1

Longitudinal analysis of electronic medical record data from 158 individuals recruited within the Epilepsy Neurogenetics Initiative (ENGIN) at Children’s Hospital of Philadelphia with epilepsies attributable to genes from the 104-gene panel in Symonds et al. (2019). (A) The cumulative distribution of seizure onset by age. (B) The cumulative distribution of genetic diagnoses by age, with points indicating the time of individual diagnoses. (C) The number of individuals with genetic epilepsies attending clinic by age in 3-month bins, with and without active prescriptions for 20 common anti-epileptic medications. (D) The proportion of individuals with genetic epilepsies who are prescribed anti-epileptic medication by time in 3-month bins, with 95% confidence intervals.

Acknowledgement

Thanks to Dr Joseph Symonds (Paediatric Neurosciences Research Group, Royal Hospital for Children, and the College of Medical, Veterinary and Life Sciences, University of Glasgow, UK) for providing the supplementary data to the article and to Shiva Ganesan and Julie Xian (Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA) for technical assistance in analysing the electronic medical record data.

Funding
DLS is funded by the Wellcome Trust 4ward North Clinical PhD Academy. The contributions of CAE and IH were supported by the Epilepsy Neurogenetics Initiative at Children’s Hospital of Philadelphia and the Genomics Research and Innovation Network (GRIN, grinnetwork.org, a collaboration amongst the Children’s Hospital of Philadelphia, Boston Children’s Hospital, and Cincinnati Children’s Hospital Medical Center) and the Channelopathy-associated Epilepsy Research Center, a Center Without Walls funded by NIH/NINDS (1U54NS108874-01).

Competing interests

DLS has received meeting support from UCB Pharma and was a Guarantors of Brain Entry Fellow (August 2018-July 2019). RHT has received honoraria and meeting support from Bial, Eisai, GW Pharma, LivaNova, Novartis, Sanofi, UCB Pharma and Zogenix. IH has no competing interests to declare.

References


